Stability of Inequalities in the Dual Brunn-Minkowski Theory
نویسندگان
چکیده
منابع مشابه
Gaussian Brunn-minkowski Inequalities
A detailed investigation is undertaken into Brunn-Minkowski-type inequalities for Gauss measure. A Gaussian dual Brunn-Minkowski inequality, the first of its type, is proved, together with precise equality conditions, and is shown to be the best possible from several points of view. A new Gaussian Brunn-Minkowski inequality is proposed and proved to be true in some significant special cases. Th...
متن کاملThe Dual Brunn-minkowski Theory for Bounded Borel Sets: Dual Affine Quermassintegrals and Inequalities
This paper develops a significant extension of E. Lutwak’s dual Brunn-Minkowski theory, originally applicable only to star-shaped sets, to the class of bounded Borel sets. The focus is on expressions and inequalities involving chord-power integrals, random simplex integrals, and dual affine quermassintegrals. New inequalities obtained include those of isoperimetric and Brunn-Minkowski type. A n...
متن کاملGaussian Brunn - Minkowski Inequalities Richard
A detailed investigation is undertaken into Brunn-Minkowski-type inequalities for Gauss measure. A Gaussian dual Brunn-Minkowski inequality, the first of its type, is proved, together with precise equality conditions, and shown to be best possible from several points of view. A new Gaussian Brunn-Minkowski inequality is proposed, and proved to be true in some significant special cases. Througho...
متن کاملStability Results for the Brunn-minkowski Inequality
The Brunn-Miknowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This classical inequality in convex geometry was inspired by issues around the isoperimetric problem and was considered for a long time to belong to geometry, where its significance is widely recognized. However, it is by now clear that the Brunn-Miknowski ineq...
متن کاملQuantitative stability for the Brunn-Minkowski inequality
We prove a quantitative stability result for the Brunn-Minkowski inequality: if |A| = |B| = 1, t ∈ [τ, 1−τ ] with τ > 0, and |tA+(1−t)B| ≤ 1+δ for some small δ, then, up to a translation, both A and B are quantitatively close (in terms of δ) to a convex set K.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1999
ISSN: 0022-247X
DOI: 10.1006/jmaa.1998.6254